Classification of Medicinal Plant Leaves for Types and Diseases with Hybrid Deep Learning Methods

Author:

Kayaalp Kiyas

Abstract

Leaf images are often used to detect plant diseases because most disease symptoms appear on the leaves. Analyzes performed by experts in the laboratory environment are expensive and time consuming. Therefore, there is a need for automated plant disease detection systems that are both economical and can help diagnose early symptoms more accurately. In this study, a deep learning-based methodology is presented for the classification of leaf diseases of plants, which are very similar in color, texture, vein and shape and cannot be noticed by non-experts, which are important for traditional medicine and pharmaceutical industry. In the model development process, 7 pre-learning deep learning algorithms and an image data set created from plant leaves in 10 categories were preferred. The proposed model classifies the plant type and diseased condition in the dataset. In the first step of training the model, different learning rates were tested with optimum hyperparameters. In the second part, a test accuracy rate of 98.69% was achieved with the DenseNet121 model, with increased data. At the last stage, after the edge detection processes, the test accuracy value of 67.92% was reached with the DenseNet 121 model.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3