Author:
Sun Gang,Wang Zhongxin,Zhao Jia
Abstract
In the era of big data, information overload problems are becoming increasingly prominent. It is challengingfor machines to understand, compress and filter massive text information through the use of artificial intelligencetechnology. The emergence of automatic text summarization mainly aims at solving the problem ofinformation overload, and it can be divided into two types: extractive and abstractive. The former finds somekey sentences or phrases from the original text and combines them into a summarization; the latter needs acomputer to understand the content of the original text and then uses the readable language for the human tosummarize the key information of the original text. This paper presents a two-stage optimization method forautomatic text summarization that combines abstractive summarization and extractive summarization. First,a sequence-to-sequence model with the attention mechanism is trained as a baseline model to generate initialsummarization. Second, it is updated and optimized directly on the ROUGE metric by using deep reinforcementlearning (DRL). Experimental results show that compared with the baseline model, Rouge-1, Rouge-2,and Rouge-L have been increased on the LCSTS dataset and CNN/DailyMail dataset.
Publisher
Kaunas University of Technology (KTU)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献