Automatic Text Summarization Using Deep Reinforcement Learning and Beyond

Author:

Sun Gang,Wang Zhongxin,Zhao Jia

Abstract

In the era of big data, information overload problems are becoming increasingly prominent. It is challengingfor machines to understand, compress and filter massive text information through the use of artificial intelligencetechnology. The emergence of automatic text summarization mainly aims at solving the problem ofinformation overload, and it can be divided into two types: extractive and abstractive. The former finds somekey sentences or phrases from the original text and combines them into a summarization; the latter needs acomputer to understand the content of the original text and then uses the readable language for the human tosummarize the key information of the original text. This paper presents a two-stage optimization method forautomatic text summarization that combines abstractive summarization and extractive summarization. First,a sequence-to-sequence model with the attention mechanism is trained as a baseline model to generate initialsummarization. Second, it is updated and optimized directly on the ROUGE metric by using deep reinforcementlearning (DRL). Experimental results show that compared with the baseline model, Rouge-1, Rouge-2,and Rouge-L have been increased on the LCSTS dataset and CNN/DailyMail dataset.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3