Security in Medical Image Management Using Ant Colony Optimization

Author:

Karthikeyini S.,Sagayaraj R.,Rajkumar N.,Pillai Punitha Kumaresa

Abstract

Data encryption before transmission is still a crucial step in lowering security concerns in cloud-based environments. Steganography and image encryption methods validate the security of confidential data while it is being transmitted over the Internet. The paper presents the Ant Colony Optimization with Encryption Curve cryptography-based steganography technique to enhance the security of medical image management (ACO-ECC-SMIM). The initial stage is to create the stego images for the used cover image, the ACO algorithm-based image steganography technique is used. The creation of the encryption process is a key focus of the suggested ACO-ECC-SMIM strategy. The encryption process is initially carried out using an ECC technique, or elliptic curve cryptography. To maximize PSNR, the ACO technique is employed to optimize the crucial production process in the ECC model. The host image is subjected to an integer wavelet transform, and the coefficients have been altered. To determine the ideal coefficients where to conceal the data, the ACO optimization technique is utilized. The decryption and sharing reconstruction procedures are then carried out on the receiver side to create the original images. In image 1, the ACO-ECC-SMIM model showed an improved PSNR of 59.37dB. Image 5 has an improved PSNR of 59.53dB thanks to the ACO-ECC-SMIM model. A large-scale experimental investigation was conducted to show the improved performance of the proposed PIOE-SMIM method, and the findings demonstrated the superiority of the ACO-ECC-SMIM model over other approaches.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Data Security through Machine Learning-based Key Generation and Encryption;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3