Weight Coefficient Based Adaptive Federated Learning for Vehicular Data Transmission

Author:

Xie Hui

Abstract

With the ever-increasing amount of vehicle data being generated, the collection and transmission of this data-to-data processing centers is consuming significant amounts of communication resources. The traditional method of compressing and transmitting the vehicle data is not effective in addressing the issue of efficient utilization of this data. In order to overcome this challenge, we propose an adaptive federated learning approach that avoids the need for transmitting data per vehicle. Our approach leverages the vehicle as a distributed training device node and enables the training of vehicle data using the vehicle's own computing power, thereby eliminating the need to transmit the data over the network. To further enhance the efficiency of the federated learning aggregation calculation, we introduce the information entropy function and cosine similarity calculation. By computing the similarity between the model and the benchmark model, we are able to give a new round of model aggregation calculation weight. Finally, we validate the proposed algorithm using the actual MNIST dataset, demonstrating its high effectiveness.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3