Dual Attention Aware Octave Convolution Network for Early-Stage Alzheimer's Disease Detection

Author:

Rangaraju Banupriya,Chinnadurai Thilagavathi,Natarajan Sarmiladevi,Raja Vishnu

Abstract

Some of the most fundamental human capabilities, including thought, speech, and movement, may be lost due to brain illnesses. The most prevalent form of dementia, Alzheimer's disease (AD), is caused by a steady decline in brain function and is now incurable. Despite the challenges associated with making a conclusive diagnosis of AD, the field has generally shifted toward making diagnoses justified by patient records and neurological analysis, such as MRI. Reports of studies utilizing machine learning for AD identification have increased in recent years. In this publication, we report the results of our most recent research. It details a deep learning-based, 3D brain MRI-based method for automated AD detection. As a result, deep learning models have become increasingly popular in recent years for analyzing medical images. To aid in detecting Alzheimer's disease at an initial phase, we suggest a dual attention-aware Octave convolution-based deep learning network (DACN). The three main parts of DACN are as follows: First, we use Patch Convolutional Neural Network (PCNN) to identify discriminative features within each MRI patch while simultaneously boosting the features of abnormally altered micro-structures in the brain; second, we use an Octave convolution to minimize the spatial redundancy and widen the field of perception of the brain's structure; and third, we use a dual attention aware convolution classifier to dissect the resulting depiction further. An outstanding test accuracy of 99.87% is reached for categorizing dementia phases by employing the suggested method in experiments on a publically available ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset. The proposed model was more effective, efficient, and reliable than the state-of-the-art models through our comparisons.

Publisher

Kaunas University of Technology (KTU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3