Abstract
Brain-Computer Interface (BCI) is a technology in which Electroencephalogram (EEG) signals are utilized to create a link between a person’s mental state and a computer-based signal processing system that decodes the signals without needing muscle movement. The mental process of picturing the movement of a body component without actually moving that body part is known as Motor Imagery (MI). MI BCI is a Motor Imagery-based Brain-Computer Interface that allows patients with motor impairments to interact with their environment by operating robotic prostheses, wheelchairs, and other equipment. Feature extraction and classification are essential parts of the EEG signal processing for MI BCI. In this work, Whales Optimization Algorithm with an Improved Mutualism Phase is proposed to find the optimal Convolutional Neural Network architecture for the classification of motor imagery tasks with high accuracy and less computational complexity. The Neurosky and BCI IV 2a datasets were used to evaluate the proposed methodology. Experiments demonstrate that the suggested technique outperforms other competing methods regarding classification accuracy values at 94.1% and 87.7% for the Neurosky and BCI datasets, respectively.
Publisher
Kaunas University of Technology (KTU)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献