SSTP: Stock Sector Trend Prediction with Temporal-Spatial Network

Author:

Yin Shuo,Gao Youwei,Nie Shuai,Li Junbao

Abstract

In financial big data field, most existing work of stock prediction has focused on the prediction of a single stock trend. However, it is challenging to predict a stock price series due to its drastic volatility. While the stock sector is a group of stocks belonging to the same sector, and the stock sector index is the weighted sum of the prices of all the stocks in the sector. Therefore the trend of stock sector is more stable and more feasible to predict than that of a single stock. In this paper, we propose a new method named Stock Sector Trend Prediction (SSTP) to solve the problem of predicting stock sector trend. In SSTP method, we adopt the Relative Price Strength (RPS) to describe the trend of the stock sector, which is the relative rank of stock sector trend. In order to learn the intrinsic probability distribution of the stock sector index series, we construct the multi-scale RPS time series and build multiple independent fully-connected stock sector relation graphs based on the real relationship among stock sectors. Then, we propose a Temporal-spatial Network (TSN) to extract the temporal features from the multi-scale RPS series and the spatial features from the stock sector relation graphs. Finally, the TSN predicts and ranks the trends of the stock sector trend with the temporal-spatial features. The experimental results on the real-world dataset validate the effectiveness of the proposed SSTP method for the stock sector trend prediction.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3