Application of Deep Reinforcement Learning for Tracking Control of 3WD Omnidirectional Mobile Robot

Author:

Mehmood Atif,Shaikh Inam ul Hasan,Ali Ahsan

Abstract

Deep reinforcement learning, the fastest growing technique, to solve real-world complex problems by creatinga simple mathematical framework. It includes an agent, action, environment, and a reward. An agent will interactwith the environment, takes an optimal action aiming to maximize the total reward. This paper proposesthe compelling technique of deep deterministic policy gradient for solving the complex continuous actionspace of 3-wheeled omnidirectional mobile robots. Three-wheeled Omnidirectional mobile robots tracking isa difficult task because of the orientation of the wheels which makes it rotate around its own axis rather tofollow the trajectory. A deep deterministic policy gradient (DDPG) algorithm has been designed to train in environmentswith continuous action space to follow the trajectory by training the neural networks defined forthe policy and value function to maximize the reward function defined for the tracking of the trajectory. DDPGagent environment is created in the Reinforcement learning toolbox in MATLAB 2019 while for Actor and criticnetwork design deep neural network designer is used. Results are shown to illustrate the effectiveness of thetechnique with a convergence of error approximately to zero.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3