A New Sentiment and Fuzzy Aware Product Recommendation System Using Weighted Aquila Optimization and GRNN in e-Commerce

Author:

Rosewelt L. Antony,Raju D. Naveen,Sujatha E.

Abstract

Customer reviews are playing an important role in e-commerce for increasing sales by knowing the customer’s purchase pattern and expectations. The reviews that are collected after completing their purchase reflect the quality and services in e-commerce. The user’s reviews are characterized and categorized through sentiment and semantic analysis. Moreover, the sentiment and semantic classification processes are also performed to predict the user’s purchase patterns and liked products. However, the available classification is not able to predict the user’s purchase patterns. In this paper, we propose a new Product Recommendation System (PRS) to predict the appropriate product for users based on their purchase behavior and pattern. The proposed recommendation system incorporates the standard data preprocessing tasks like tokenization process, Parts of Speech (PoS) tagging process, and parsing, a new sentiment and semantic score calculation procedure, and a new feature optimization technique called the Weighted Aquila Optimization Method (WAOM). Moreover, the sentiment and semantic classification processes are performed by applying a General Regression Neural Network with the incorporation of fuzzy temporal features (FTGRNN) and obtaining better classification results. The newly developed PRS is evaluated by conducting experiments in this work and also proved as superior than other systems available in this direction in terms of prediction accuracy, precision, recall, serendipity and nDCG.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Multimodal Fusion for Depression Detection: Integrating Facial Emotion Recognition, EEG Signals and Audio Cues;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Enhancing the preciseness of prediction in heart disease diagnosis by utilizing machine learning;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

3. Analysis of Sentimental on Twitter using Content Aware Support Vector Machines;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

4. Twitter spam detection through feature integration and an enhanced deep neural network;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3