An attempt to use the results of microtomographic studies of the surface after the period of operation in the numerical analysis of wheel-rail contacts

Author:

JOHN Antoni,Bąkowski Henryk,Brodny Jarosław

Abstract

During the contact of two bodies, their interaction causes an increase in stress and thus an increase in surface energy. Therefore, this energy, depending on the type of material, can cause physicochemical changes in it, which in turn lead to the phenomenon of decohesion. In order for the phenomenon to occur, it must be exceeded the limit of strength of the material is usually the yield point. Depending on the material's properties (especially hardness) the time in which contact surfaces stay in contact is extremely important because the longer it is, the more energy will be transferred to the other body. In the case of materials with a high hardness, the energy is first converted into elastic and then plastic impacts, causing plastic deformation and dislocation motion, leading to the separation of material layers and its defect. However, much more plastic materials are faster than the yield point and the separation of material in the form of flaky wear debris. The paper presents the influence of selected exploitation factors on the condition of the surface layer through the use of simulation tests using the Finite Element Method (FEM). The surface layer was mapped using a computer microtomograph and the influence of operational parameters on its condition was presented using simulation tests by means of FEM.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3