Study on the Microstructure and Wear Behavior of In-Situ Al3Ti/Al Composites Under Induction Heating

Author:

YAN Yuting,NIU Libin,ZHANG Anwen,LIU Chengxin,FAN Zhidong,MA Yichao

Abstract

In the study, Ti fiber (200 μm, 99.8 wt.%) and pure aluminum (99.6 wt.%) were respectively used as the reaction source and matrix to prepare Al-based composites by in-situ synthesis methods. During the stage of preparing the preform, Ti fibers were fixed in the matrix at equal intervals to pre-control the initial position of the product. The preform was heated in an induction heating device finally, at the same time, parameter combinations of different frequencies and currents were applied to promote the in-situ reaction between Al-Ti, thereby the Al matrix composites reinforced by Al3Ti were obtained. The phase composition, microstructure and wear resistance of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and wear testers. The results show that when the frequency and current are 5 kHz and 15 A respectively, the Ti fiber is completely reacted, and the product is the isometric Al3Ti with a size of 1 – 2 μm and a particle spacing of about 5 μm, reaching the optimal microstructure under all parameters. Under the condition of a load of 9.8 N, the wear rate of the composites at 5 kHz and 15 A is 2.325 mg/mm2, indicating the best values in this experiment.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3