Abstract
The monitoring of changes in aquatic ecosystems due to anthropogenic activities is of utmost importance to ensure the health of aquatic biodiversity. Eutrophication in water bodies due to anthropogenic disturbances serves as one of the major sources of nutrient efflux and consequently changes the biological productivity and community structure of these ecosystems. Habitat destruction and overexploitation of natural resources are other sources that impact the equilibrium of aquatic systems. Environmental DNA (eDNA) is a tool that can help to assess and monitor aquatic biodiversity. There has been a considerable outpour of research in this area in the recent past, particularly concerning conservation and biodiversity management. This review focuses on the application of eDNA for the detection and relative quantification of threatened, endangered, invasive and elusive species. We give a special emphasis on how this technique developed in the past few years to become a tool for understanding the impact of spatial-temporal changes on ecosystems. Incorporating eDNA based biomonitoring with advances in sequencing technologies and computational abilities had an immense role in the development of different avenues of application of this tool.
Publisher
Wildlife Information Liaison Development Society
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics