Chemistry and Biology of Cyanides: A Literature Review

Author:

Muderawan I WayanORCID,Karyasa I Wayan,Tika I Nyoman,Beni Widana Gede Agus

Abstract

The term cyanide is used to describe compounds that contain the cyano, -C≡N, group. The cyanides exist in nature as inorganic as well as organic compounds in the forms of gas or liquid such as HCN, CNCl and acetonitrile, or solids such as NaCN, KCN, and Ca(CN)2. Cyanide compounds are also found in addible plants as cyanogenic glycosides. Compounds that can release cyanide are known as cyanogenic compounds. HCN has a low boiling point (25.63 oC) and is as weakly acidic with a pKa 9.2. It partially ionizes in water to give the cyanide anion, -CN. Cyanide ion from salt reacts with acid to give HCN, but at high pH (8-10), it remains as cyanide ion even if the temperature of the water is 80.0-100.0 °C. Cyanide is one of the deadliest poisons, LC50 is 1.1 and 5.0 mg/kg for HCN and NaCN, which can cause death to those who come into contact within a few minutes or hours of exposure, depending on the level and route of exposure. It is a rapidly acting, potentially deadly chemical that interferes with the body’s ability to use oxygen. Due to its toxicity, cyanide has many roles in industry such as pesticides and medicines as nitrile-containing pharmaceuticals. Organic compounds that have a −C≡N functional group are called nitriles. Over 30 nitrile-containing pharmaceuticals are currently marketed for a diverse variety of medicinal indications with more than 20 additional nitrile-containing leads in clinical development. In addition, over 120 naturally occurring nitriles have been isolated from terrestrial and marine sources.  In plants, cyanides are usually bound to sugar molecules in the form of cyanogenic glycosides. Hydrogen cyanide can be released from hydrolysis of cyanogenic glycosides which are commonly present in edible plants. Because it is a relatively common toxin in the environment, the body can detoxify a small amount of cyanide. The major route of metabolism for cyanides is detoxification in the liver by the mitochondrial enzyme rhodanese, which catalyzes the transfer of the sulfane sulfur of thiosulfate to the cyanide ion to form thiocyanate. Ingested cyanide may be countered by administering antidotes, such as natural vitamin B12 and sodium thiosulfate, that detoxify cyanide or bind to it.

Publisher

Universitas Negeri Yogyakarta

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3