Constructing Portfolio Optimization: Analysis in Indonesia Non-Cyclical Industry (Markowitz Approach and Skewness and Kurtosis)

Author:

Irhamni FirlyORCID

Abstract

Purpose: The purpose of this research is to examine the application of portfolio optimization in the context of real-world financial issues, particularly in light of the challenges posed by the COVID-19 pandemic. Traditional portfolio optimization strategies, such as those proposed by Markowitz, often rely on the assumption of normally distributed returns, which may not accurately capture the risks associated with extreme events like the COVID-19 crisis. This study aims to shed new light on portfolio optimization methods by exploring various approaches and considering the implications of non-normally distributed returns on portfolio construction.   Methods: This research employs a quantitative approach to analyze portfolio optimization techniques in the face of non-normally distributed returns. Using data from financial markets impacted by the COVID-19 pandemic, the study investigates different portfolio construction methods, including risk-free rate for equally weighted portfolios, optimal risk portfolios, minimum variance weights, and maximum expected returns. Various risk metrics such as variance, Sharpe ratio, and standard deviation are considered to evaluate portfolio performance under different constraints.   Results and discussion: The empirical findings highlight the limitations of traditional portfolio optimization techniques, particularly in accurately assessing and managing risk in the presence of non-normally distributed returns. Assets exhibit heavily tailed returns, leading to an underestimation of risk when using standard approaches. The study identifies that certain assets offer high returns but also entail significant risks, necessitating a nuanced approach to portfolio construction. By considering stable distribution models and optimizing for both maximum expected return and minimum variance weight, investors can build more profitable and diversified portfolios while managing risk effectively.   Implications of the research: The research findings have important implications for investors and financial practitioners, particularly in navigating uncertain market conditions such as those brought about by the COVID-19 pandemic. By recognizing the limitations of traditional portfolio optimization methods and embracing more sophisticated approaches that account for non-normally distributed returns, investors can make more informed decisions and better manage portfolio risk. These insights can inform the development of robust investment strategies tailored to mitigate the impact of extreme events on portfolio performance.   Originality/value: This research contributes to the literature by offering a fresh perspective on portfolio optimization under the backdrop of the COVID-19 pandemic. By systematically evaluating different portfolio construction methods and considering the implications of non-normally distributed returns, the study advances understanding in the field of financial risk management. The identification of stable distribution models and the emphasis on balancing maximum expected return with minimum variance weight provide practical guidance for investors seeking to build resilient and profitable portfolios in turbulent market environments. Overall, this research underscores the importance of adapting portfolio optimization strategies to address the realities of contemporary financial markets.

Publisher

RGSA- Revista de Gestao Social e Ambiental

Reference19 articles.

1. Equally Weighted Strategic Allocation and Balanced Funds in Brazil

2. Chandra Liliana and Hapsari Yudith Dyah “Analisis Pembentukan Portofo Optimal Dengan Menggunakan Model Markowitz Untuk Saham LQ 45 PERIODE 2008‐‐2012 “ Jurnal Manajemen [VOL 1 NO. 1 MEI 2013: 41-65]

3. The Role of the Normal Distribution in Financial Markets

4. The Behavior of Stock-Market Prices

5. E. F. Fama, (1976). Foundations of Finance: Portfolio Decisions and Securities Prices, New York: Basic Books.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3