Development of A Man-Machine Interface for Managing Photovoltaic Energy: Applied Study

Author:

Pinheiro ElisângelaORCID,Muller Felipe MartinsORCID,Candeia Ezequias DanielORCID,Moretto Marcos AntônioORCID

Abstract

Objective: Develop and evaluate a human-machine interface (HMI) that integrates advanced monitoring, forecasting, and management functionalities for photovoltaic solar energy systems, aiming to optimize energy production and operational efficiency.   Theoretical Framework: This study is based on concepts of modeling and simulation, solar energy management, and problem-solving methodologies such as Soft System Methodology (SSM).   Method: An applied approach was adopted using modeling, simulation, and statistical analysis techniques. The research included a bibliographic review in scientific databases, a case study, and SSM to organize and solve complex problems. 121 digital solar energy platforms in Brazil were analyzed to define the interface requirements. The interface was developed with React JS, Axios, Bootstrap v5, Apache Echarts, HTML, CSS, JavaScript, and Python libraries for forecasting models.   Results and Discussion: The interface, named "Solar Smart Manager," enables efficient monitoring and management of energy production using critical data such as temperature, time of day, and solar irradiation. Tests in a real operational environment demonstrated improvements in energy management, incident response, and preventive maintenance. The functionality of validating solar radiation incidence data represents a significant contribution to the energy sector, promoting sustainability and innovation.   Research Implications: The practical and theoretical implications of this research provide insights into the efficient and optimized management of photovoltaic solar energy systems, contributing to a better understanding and optimization of available solar resources.   Originality/Value: This study contributes to the literature by developing an innovative interface that improves operational efficiency and solar energy management. The relevance and value of this research are evidenced by its positive impact on the energy sector, promoting sustainability and innovation.

Publisher

RGSA- Revista de Gestao Social e Ambiental

Reference41 articles.

1. aldahoul, N.; Karim, H. A.; Momo, M. A. RGB-D based multi-modal deep learning for spacecraft and debris recognition. Scientific Reports, v. 12, n. 1, p. 3924, 2022. Disponível em: . .

2. Alves, P. V.; Dos Reis, L. H. S.; Gois, D. A. ESTUDO DO POTENCIAL ENERGÉTICO SOLAR EM HUMAITÁ-AM, BASEADO EM DADOS DE RADIAÇÃO DA ESTAÇÃO AUTOMÁTICA DO INMET. VII Congresso Brasileiro de Energia Solar - CBENS 2018. Anais... . p.1–4, 2018. Gramado: ABENS. Disponível em: . .

3. Andrade, M. M. Introdução À Metodologia Do Trabalho Científico. 10o ed. São Paulo, 2017.

4. ANEEL. GERAÇÃO: Brasil supera em 2022 os 8 GW de expansão na capacidade instalada. Disponível em: . Acesso em: 15/5/2023.

5. Assunção, W. B. M. DE; Deus, R. J. A. De. O USO DE RECURSOS NATURAIS E OS IMPACTOS NO MEIO AMBIENTE: REVISÃO SISTEMÁTICA. Revista Ouricuri, v. 12, n. 2, p. 1–20, 2022. Disponível em: . .

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3