“Efficiency of Carlson Modeling of Eutrophication of the Inner Bay - Puno Lake Titicaca”
-
Published:2024-08-09
Issue:7
Volume:18
Page:e08361
-
ISSN:1981-982X
-
Container-title:Revista de Gestão Social e Ambiental
-
language:
-
Short-container-title:RGSA
Author:
Maquera Yuselino MaqueraORCID, Talavera Fran Olger LinoORCID, Pasco Pedro Alvaro Edwin GallegosORCID, Apaza-Ticona JorgeORCID, Alvarez Nely AliagaORCID, Flores Rene Justo QuispeORCID, Apaza-Chino JulianORCID
Abstract
Objectives: Determine the degree of water contamination, expressed as a percentage of pure water; Quantify and evaluate water quality; recognize the sources of pollution and know the most relevant pollutants of the channels and mechanisms of eutrophication.
Theoretical Framework: Pollution, water quality, pollution sources, tributaries-channels and eutrophication mechanisms.
Method: The trophic state index of Carlson (1977) or TSI (Trophic State Index) was used. It is a longitudinal study from 2008 to 2016. With 15 sampling points, 12 times a year, evaluating the physical, chemical and microbiological parameters at each sampling point at 20% and 80% of the water column.
Results and Discussion: Use modeling to predict the concentration of contaminants for the different treatment alternatives. Likewise, give a description of a model to estimate water quality. In conclusion, we indicate that the Carlson trophic state index has determined that the most relevant pollutants in the eutrophication process of the Interior Bay are nutrients and phosphates, these coming from the discharge of domestic wastewater from the city of Puno.
Research implications: The study will serve to evaluate the behavior of water quality and implement mitigation policies.
Originality/Value: This study will contribute to monitoring and treating wastewater.
Publisher
RGSA- Revista de Gestao Social e Ambiental
Reference26 articles.
1. Avendaño, R. C., Galindo, A. R., & Angulo, A. A. (n.d.). Ecología y educación ambiental (Issue september 2016). https://dgep.uas.edu.mx/librosdigitales/6to_SEMESTRE/54_Ecologia_y_Educacion_Ambiental.pdf%0A%0A%0A%0A%0A%0A 2. Belizario, G., Capacoila, J., Huaquisto, E., Cornejo, D. A., & Chui, H. N. (2019). Determinación Del Contenido De Fósforo Y Arsénico, Y De Otros Metales Contaminantes De Las Aguas Superficiales Del Río Coata, Afluente Del Lago Titicaca, Perú. Revista Boliviana de Química, 36(5), 223–228. https://doi.org/10.34098/2078-3949.36.5.4 3. Beltrán, D. F., Palomino, R. P., Moreno, E. G., Peralta, C. G., & Montesinos, D. B. (2015). Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Rev. Peru. Biol, 22(223), 335–340. Los valores de alcalinidad fueron altos (75 – 150 mg/L) y muy altos (%3E150 mg/L), indicando un alto contenido de carbonatos y bicarbonatos. La dureza total registrada indica aguas duras (121 – 180 mg/L) y muy duras (%3E180 mg/L). Las altas cantidades de 4. Benítez, P., & Miranda, L. (2013). Contaminación de aguas superficiales por residuos de plaguicidas en venezuela y otros paises de latinoamerica. Vol. 29, 29, 1–18. https://www.redalyc.org/pdf/370/37028958001.pdf%0A%0A%0A%0A%0A%0A 5. Bofill, S., Clemente, P., Albiñana, N., Maluquer, C., Hundesa, A., & Girones Llop, R. (2005). Efectos sobre la salud de la contaminación de agua y alimentos por virus emergentes humanos. Revista Española de Salud Pública, 79(2), 253–269. https://doi.org/10.1590/s1135-57272005000200012
|
|