Abstract
Objective: The objective of this study is to develop a mathematical model based on multi-objective optimization to assist farmers who have adopted the Crop-Livestock-Forest Integration (ILPF) system, aiming to maximize production with resource limitations.
Theoretical Framework: In this topic, sustainable agriculture, rural management, and mathematical optimization tools are discussed, providing a solid basis for understanding the research context.
Method: It comprises an applied approach, considering the main inputs, costs and production revenues necessary to power the model. Microsoft Corporation's Excel Solver computational tool, version 7.3.5.2(x64)/LibreOffice Community, was used due to its accessibility and practicality for rural producers.
Results and Discussion: The proposed mathematical model provides assistance in decision making, considering the distribution of areas for different productions with a view to achieving efficient results. In the discussion, these results are contextualized in light of the theoretical framework, highlighting the implications and relationships identified. Discrepancies and limitations of the study are also considered.
Research Implications: The results can be applied to rural management and sustainable agriculture. These implications may include optimizing resources and improving the productive efficiency of farmers who use the ILPF system.
Originality/Value: Considers the balance of economic, social and environmental aspects in the use of the ILPF system. The relevance and value of this research are evidenced by its potential to improve decision-making and maximize the efficient use of resources in sustainable agriculture.
Publisher
RGSA- Revista de Gestao Social e Ambiental
Reference10 articles.
1. Arroyo, Jose Elias Claudio. Heurísticas e Metaheurísticas para Otimização Combinatória Multiobjetivo. 2002. Tese (Doutorado). Universidade Estadual de Campinas - UNICAMP, 2002.
2. Balbino, L. C.; Cordeiro, L. A. M.; Porfírio-da-silva, V.; Moraes, A. de; Martínez, G. B.; Alvarenga, R. C.; Kichel, A. N.; Fontaneli, R. S.; SantoS, H. P. dos; Franchini, J. C.; Galerani, P. R. Evolução tecnológica e arranjos produtivos de sistemas de Integração Lavoura-Pecuária-Floresta no Brasil. Pesquisa Agropecuária Brasileira, Brasília, v. 46, n. 10, 2011.
3. Coello, C. A. C. Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, p. 28-36, fev. 2006.
4. CONAB. Norma Metodologia do Custo de Produção 30.302. SUINF/GECUP. 2020. Disponível em: https://www.conab.gov.br/images/arquivos/normativos/30000_sistema_de_operacoes/30.302_Norma_Metodologia_de_Custo_de_Producao.pdf. Acesso em: 10 jan. 2024.
5. Deb, K. Multi-objective optimization using evolutionary algorithms. New Jersey: John Wiley & Sons, 2001. 518 p.