Determining appropriate methods for estimating pollen viability and germination rates in lisianthus

Author:

Kılıç TuğbaORCID,Sinanoğlu EbruORCID,Kırbay EmineORCID,Kazaz SonerORCID,Ercişli SezaiORCID

Abstract

Crossbreeding is a multi-stage process with inherent challenges and risks in developing new varieties. Success hinges on selecting highly fertile parents. In species like lisianthus, uncertainty persists regarding the optimal methods for assessing pollen quality, which is crucial for evaluating pollen parent fertility. This study seeks to identify the most reliable techniques for this purpose. Fresh and dead pollen from four lisianthus (Eustoma grandiflorum) varieties was used. The dead pollen was obtained by thermal inactivation. Five chemical staining methods (iodine-potassium iodide, 2,3,5-triphenyltetrazolium chloride – TTC, lactophenol cotton blue, safranin, acetocarmine) were employed to assess pollen viability, and two biological methods (Petri dishes, hanging drops) were used to determine the germination rate. Four solid medium cultures were employed in Petri dishes, while the hanging drop utilised four liquid medium cultures. Thirteen tests were conducted for each variety, evaluating fresh and dead pollen. The study found significant variations in pollen quality among lisianthus varieties and methods. Fresh pollen showed viability rates ranging from 56.87% to 99.41% and germination rates from 0.20% to 45.11%. TTC exhibited the lowest viability rate across all varieties, while the highest germination rate was observed in the liquid culture medium with only boric acid and PEG1500. Notably, TTC was the sole viability method that did not stain dead pollen, and no germination occurred in any method for dead pollen. TTC is the most reliable staining method, and a liquid culture medium with boric acid and PEG1500 effectively determines lisianthus pollen quality. Varying boric acid and PEG1500 concentrations are advisable.

Publisher

Uniwersytet Przyrodniczy w Lublinie

Reference42 articles.

1. Abdelgadir, H.A., Johonson, S.D., Van Staden, J. (2012). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S. Afr. J. Bot., 79, 132–139. https://doi.org/10.1016/j.sajb.2011.10.005

2. Bolat, İ., Güleryüz, B. (1994). Bazı kayısı çeşitlerinde çiçek tozu canlılık ve çimlenme düzeyleri ile bunlar arasındaki ilişkinin belirlenmesi üzerine bir araştırma [A study on the determination of pollen viability and germination and their interaction of some apricot cultivars]. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 25(3), 344–353.

3. Bolat, İ., Pırlak, L. (1999). An investigation on pollen viability, germination and tube growth in some stone fruits. Turk. J. Agric. Forest., 23, 383–388.

4. Erbaş, S, Alagöz, M, Baydar, H. (2015). Research on flower morphology and pollen viability of oil-bearing rose (Rosa damascena Mill.). J. Fac. Agric. 10(2), 40–50.

5. Eti, S. (1990). Çiçek tozu miktarını belirlemede kullanılan pratik bir yöntem [A practical method for the determination of pollen production]. Çukurova Üniv. Ziraat Fakültesi Der. 5(4), 49–58.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3