How monochromatic and composed light affect the kale ‘Scarlet’ in its initial growth stage
-
Published:2023-06-30
Issue:3
Volume:22
Page:93-100
-
ISSN:2545-1405
-
Container-title:Acta Scientiarum Polonorum Hortorum Cultus
-
language:
-
Short-container-title:Acta Sci. Pol. Hortorum Cultus
Author:
Wojciechowska RenataORCID, Dąbrowa Anna, Kołton AnnaORCID
Abstract
Interest in vegetables at their microgreen stage, especially those from the Brassicaceae family, has constantly grown due to their numerous health-promoting compounds. Brassica oleracea convar. acephala var. sabellica cv. Scarlet with purple leaf discolouration was used in the study. Four LED lighting treatments were applied: white light (control), monochromatic blue (430 nm), monochromatic red (660 nm) and purple, i.e., blue (30% in spectrum, 430 nm) mixed with red (70%, 620 nm and 660 nm in equal shares). Photosynthetic photon flux density (PPFD) was 100 µmol m–2 s–1, photoperiod – 16 h light. The purple light promoted the cotyledon growth but decreased the soluble sugars content. The blue light significantly enhanced the anthocyanins synthesis and the radical scavenging activity (RSA). While under white light, the highest concentration of free amino acids and the lowest RSA were observed. As regards the phenolic compounds and photosynthetic pigments content, the reaction of kale to white light was similar to those observed under the purple and red light conditions. The experiment discussed here is of great practical importance and reveals the need for more in-depth research.
Publisher
Uniwersytet Przyrodniczy w Lublinie
Subject
Horticulture,Plant Science
Reference29 articles.
1. Alrifai, O., Hao, X., Marcone, M.F., Tsao, R. (2019). Current review of the modulatory effect of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Agric. Food Chem., 67, 6075–6090. https://doi.org/10.1021/acs.jafc.9b00819 2. Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic., 235, 437–451. https://doi.org/10.1016/j.scienta.2018.02.058 3. Brazaitytė, A., Miliauskienė, J., Vaštkatiė-Kairienė, V., Sutulienė, R., Laužikė, K., Duchovskis, P., Małek, S. (2021). Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants, 10, 801. https://doi.org/10.3390/plants10040801 4. Brazaitytė, A., Viršilė, A., Samoulienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtatutas, R., Novičkovas, A., Dabašinskas, L., Vaštkatiė, V., Miliauskienė, J., Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic., 1134, 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37 5. Chutipongtanate, S., Watcharatanyatip, K., Homvises, T., Jaturongkakul, K., Thongboonkerd, V. (2012). Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 98, 123–129.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|