EFFECT OF PROVENANCE AND WATER STRESS ON BIOMASS AND POLYPHYLLIN CONTENT IN THE MEDICINAL PLANT Paris polyphylla Smith var. yunnanensis

Author:

Wu Xue-mei,Zuo Zhi-tian,Zhang Qing-zhi,Wang Yuan-zhong

Abstract

Water stress and provenance could affect the secondary metabolites synthesis and accumulation in herbs. Thus, this study explored the effect of soil water moisture and provenance on the growth of Paris polyphylla Smith var. yunnanensis (PPY). Three provenances (Jinping, Luquan and Weixi in Yunnan, China) of PPY samples were grown in different soil water moisture conditions [0.80, 0.70 and 0.50 field capacity (FC)] during Dec. 2015 to Sep. 2017. Results showed that the highest biomass weight was presented in 0.70 FC for Luquan and Weixi samples. Biomass weight for Jinping provenance presented a decreasing tendency with the decreased soil water moisture and the highest biomass were shown in 0.80 FC. However, quantitative analysis revealed that the total content of polyphyllin increased with decreasing the soil water moisture for Jinping and Weixi samples. The highest total content of polyphyllin in rhizome was inclined to show in Jinping samples, while the stem and leaf tissues were shown in Weixi samples. Additionally, results of ANOVA combined with PCA indicated that the difference among these three provenances were significant. Correlation analysis results revealed that 0.50 FC induced the competitive relationship occurrence for polyphyllin distribution. Thus, 0.70 FC was the most suitable soil-water condition for PPY growth. Besides, provenance collected from Jinping could consider as a good quality germplasm. Consequently, this study might provide a preliminary foundation for irrigation project formulated and provenance screened for PPY cultivation.

Publisher

Uniwersytet Przyrodniczy w Lublinie

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on Paris polyphylla Smith: A vulnerable medicinal plant species of a global significance;Journal of Applied Research on Medicinal and Aromatic Plants;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3