Formation of the leaf surface and productivity of the chickling vetch (Lathyrus sativus L.) depending on the amounts of mineral fertilizers and pre-sowing inoculation of seeds

Author:

Kaminskyi Viktor,Sokyrko Dmytro,Hanhur Volodymyr,Yeremko Liudmyla

Abstract

The aim of the study was to analyze the effect of different amounts of mineral fertilization, bacterization of seeds on the leaf surface area formation and the chickling vetch (Lathyrus sativus) productivity. The study engaged six NPK fertilization amounts (0 – the check (control) without fertilizers, N15P15K15, N30P30K30, N15P30K30 + N15 (top dressing), N45P45K45 and N30P45K45 + N15 (top dressing) on two backgrounds of pre-sowing seed treatment (the control, water seed treatment, seed treatment with microbiological preparation Rizogumin, which contains a suspension of nodule bacteria Rhizobium leguminosarum 31 and physiologically active substances of biological origin). The leaf surface area was determined by the cutting method (in the phase of the first trifoliate leaf, budding, flowering, pod formation), which includes the selection of 15 plants, where the leaves are quickly cut off, weighed and their wet weight is determined. After that, cuts are made with a probe of a known diameter, 5 pcs. from every leaf. The mass of all cuts was determined. After determining the surface area of the leaves of each plant, the average plant area was calculated for each variant of the experiment. The average leaf surface area was multiplied by the number of plants per square meter, and the result was multiplied by 10000 to convert it to the average leaf surface area per hectare. The yield accounting was maintained by the method of continuous threshing from the registration plot by a selected combine harvester, with cleaning from impurities, weighing and determining the moisture content of the harvested grain. The maximum leaf surface area (60.8 thousand m2 ha-1) was in the phase of grain filling when N30P45K45 + N15 was added to top dressing and seed treatment with Rizogumin. In the absence of inoculation, the leaf area was 4.1 thousand m2 ha-1 less.

Publisher

Uniwersytet Przyrodniczy w Lublinie

Reference28 articles.

1. Almeida N.F., Rubiales D., Vaz Patto M.C., 2015. Grass Pea. In: De Ron A. (ed.), Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, 251-265. https://doi.org/10.1007/978-1-4939-2797-5_8

2. Ali A., Alfarhan A., Aldjain I., Bokhari N., Al-Taisan W., Al-Rasheid K., Al-Quraishi S., 2008. Photosynthetic responses of pea plants (Pisum sativum L. cv. Little marvel) exposed to climate change in Riyadh city, KSA. Afr. J. Biotechnol. 7(15), 2630-2636.

3. Ashraf M.I., Pervez M.A., Amjad M., Ahmed R., Ayub M., 2011. Qualitative and quantitative response of pea (Pisum sativum L.) cultivars to judicious applications of irrigation with phosphorus and potassium. Pak. J. Life Soc. Sci. 9(2), 159-164.

4. Agha S.K., Oad F.C., Buriro U.A., 2004. Yield and yield components of inoculated and un-inoculated soybean under varying nitrogen levels. Asian J. Plant Sci. 3, 370-371. https://dx.doi.org/10.3923/ajps.2004.370.371

5. Campbell C.G., 1997. Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/ International Plant Genetic Resources Institute, Rome, Italy, 91.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3