SIFTER

Author:

Skitsas Konstantinos1,Papageorgiou Ioannis G.2,Talebi Mohammad Sadegh3,Kantere Verena2,Katehakis Michael N.4,Karras Panagiotis1

Affiliation:

1. Aarhus University

2. NTU Athens

3. University of Copenhagen

4. Rutgers University

Abstract

Can we solve finite-horizon Markov decision processes (FHMDPs) while raising low memory requirements? Such models find application in many cases where a decision-making agent needs to act in a probabilistic environment, from resource management to medicine to service provisioning. However, computing optimal policies such an agent should follow by dynamic programming value iteration raises either prohibitive space complexity, or, in reverse, non-scalable time complexity requirements. This scalability question has been largely neglected. In this paper, we propose SIFTER (Space Efficient Finite Horizon MDPs), a suite of algorithms that achieve a golden middle between space and time requirements. Our former algorithm raises space complexity growing with the square root of the horizon's length without a time-complexity overhead, while the latter's space requirements depend only logarithmically in horizon length with a corresponding logarithmic time complexity overhead. A thorough experimental study under diverse settings confirms that SIFTER algorithms achieve the predicted gains, while approximation techniques do not achieve the same combination of time efficiency, space efficiency, and result quality.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference31 articles.

1. Mohammad Gheshlaghi Azar , Ian Osband , and Rémi Munos . 2017 . Minimax Regret Bounds for Reinforcement Learning . In ICML (Proc. of Machine Learning Research , Vol. 70). 263-- 272 . Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. 2017. Minimax Regret Bounds for Reinforcement Learning. In ICML (Proc. of Machine Learning Research, Vol. 70). 263--272.

2. A finite-horizon Markov decision process model for cancer chemotherapy treatment planning: an application to sequential treatment decision making in clinical trials

3. A Markovian Decision Process;Bellman Richard E.;Journal of Mathematics and Mechanics,1957

4. Dimitri P. Bertsekas . 2017. Dynamic programming and optimal control ( 4 th ed.). Vol. 1 . Athena Scientific . Dimitri P. Bertsekas. 2017. Dynamic programming and optimal control (4th ed.). Vol. 1. Athena Scientific.

5. Hippolyte Bourel , Odalric Maillard , and Mohammad Sadegh Talebi . 2020 . Tightening Exploration in Upper Confidence Reinforcement Learning . In ICML (Proc. of Machine Learning Research , Vol. 119). 1056-- 1066 . Hippolyte Bourel, Odalric Maillard, and Mohammad Sadegh Talebi. 2020. Tightening Exploration in Upper Confidence Reinforcement Learning. In ICML (Proc. of Machine Learning Research, Vol. 119). 1056--1066.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3