Hybrid parallelization strategies for large-scale machine learning in SystemML

Author:

Boehm Matthias1,Tatikonda Shirish1,Reinwald Berthold1,Sen Prithviraj1,Tian Yuanyuan1,Burdick Douglas R.1,Vaithyanathan Shivakumar1

Affiliation:

1. IBM Research, Almaden, San Jose, CA

Abstract

SystemML aims at declarative, large-scale machine learning (ML) on top of MapReduce, where high-level ML scripts with R-like syntax are compiled to programs of MR jobs. The declarative specification of ML algorithms enables---in contrast to existing large-scale machine learning libraries---automatic optimization. SystemML's primary focus is on data parallelism but many ML algorithms inherently exhibit opportunities for task parallelism as well. A major challenge is how to efficiently combine both types of parallelism for arbitrary ML scripts and workloads. In this paper, we present a systematic approach for combining task and data parallelism for large-scale machine learning on top of MapReduce. We employ a generic Parallel FOR construct (ParFOR) as known from high performance computing (HPC). Our core contributions are (1) complementary parallelization strategies for exploiting multi-core and cluster parallelism, as well as (2) a novel cost-based optimization framework for automatically creating optimal parallel execution plans. Experiments on a variety of use cases showed that this achieves both efficiency and scalability due to automatic adaptation to ad-hoc workloads and unknown data characteristics.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3