Affiliation:
1. Ecole Polytechnique Fédérale de Lausanne
2. King Abdullah University of Science and Technology
3. University of Peloponnese
Abstract
Mining frequent subgraphs is an important operation on graphs; it is defined as finding all subgraphs that appear frequently in a database according to a given frequency threshold. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs, or protein-protein interactions in bioinformatics, are modeled as a single large graph. In this paper we present GraMi, a novel framework for frequent subgraph mining in a single large graph. GraMi undertakes a novel approach that only finds the
minimal
set of instances to satisfy the frequency threshold and avoids the costly enumeration of
all
instances required by previous approaches. We accompany our approach with a heuristic and optimizations that significantly improve performance. Additionally, we present an extension of GraMi that mines frequent patterns. Compared to subgraphs, patterns offer a more powerful version of matching that captures transitive interactions between graph nodes (like friend of a friend) which are very common in modern applications. Finally, we present CGraMi, a version supporting structural and semantic constraints, and AGraMi, an approximate version producing results with no false positives. Our experiments on real data demonstrate that our framework is up to 2 orders of magnitude faster and discovers more interesting patterns than existing approaches.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
204 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献