Panorama

Author:

Zhang Yuhao1,Kumar Arun1

Affiliation:

1. University of California

Abstract

Deep convolutional neural networks (CNNs) achieve state-of-the-art accuracy for many computer vision tasks. But using them for video monitoring applications incurs high computational cost and inference latency. Thus, recent works have studied how to improve system efficiency. But they largely focus on small "closed world" prediction vocabularies even though many applications in surveillance security, traffic analytics, etc. have an ever-growing set of target entities. We call this the "unbounded vocabulary" issue, and it is a key bottleneck for emerging video monitoring applications. We present the first data system for tacking this issue for video querying, Panorama. Our design philosophy is to build a unified and domain-agnostic system that lets application users generalize to unbounded vocabularies in an out-of-the-box manner without tedious manual re-training. To this end, we synthesize and innovate upon an array of techniques from the ML, vision, databases, and multimedia systems literature to devise a new system architecture. We also present techniques to ensure Panorama has high inference efficiency. Experiments with multiple real-world datasets show that Panorama can achieve between 2x to 20x higher efficiency than baseline approaches on in-vocabulary queries, while still yielding comparable accuracy and also generalizing well to unbounded vocabularies.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Image Calculator: 10x Faster Image-AI Inference by Replacing JPEG with Self-designing Storage Format;Proceedings of the ACM on Management of Data;2024-03-12

2. VOCALExplore: Pay-as-You-Go Video Data Exploration and Model Building;Proceedings of the VLDB Endowment;2023-09

3. Accelerating Aggregation Queries on Unstructured Streams of Data;Proceedings of the VLDB Endowment;2023-07

4. Seiden: Revisiting Query Processing in Video Database Systems;Proceedings of the VLDB Endowment;2023-05

5. Maze: A Cost-Efficient Video Deduplication System at Web-scale;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3