Mining an "anti-knowledge base" from Wikipedia updates with applications to fact checking and beyond

Author:

Karagiannis Georgios1,Trummer Immanuel1,Jo Saehan1,Khandelwal Shubham1,Wang Xuezhi2,Yu Cong2

Affiliation:

1. Cornell University

2. Google

Abstract

We introduce the problem of anti-knowledge mining. Our goal is to create an "anti-knowledge base" that contains factual mistakes. The resulting data can be used for analysis, training, and benchmarking in the research domain of automated fact checking. Prior data sets feature manually generated fact checks of famous misclaims. Instead, we focus on the long tail of factual mistakes made by Web authors, ranging from erroneous sports results to incorrect capitals. We mine mistakes automatically, by an unsupervised approach, from Wikipedia updates that correct factual mistakes. Identifying such updates (only a small fraction of the total number of updates) is one of the primary challenges. We mine anti-knowledge by a multi-step pipeline. First, we filter out candidate updates via several simple heuristics. Next, we correlate Wikipedia updates with other statements made on the Web. Using claim occurrence frequencies as input to a probabilistic model, we infer the likelihood of corrections via an iterative expectation-maximization approach. Finally, we extract mistakes in the form of subject-predicate-object triples and rank them according to several criteria. Our end result is a data set containing over 110,000 ranked mistakes with a precision of 85% in the top 1% and a precision of over 60% in the top 25%. We demonstrate that baselines achieve significantly lower precision. Also, we exploit our data to verify several hypothesis on why users make mistakes. We finally show that the AKB can be used to find mistakes on the entire Web.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Completeness, Recall, and Negation in Open-world Knowledge Bases: A Survey;ACM Computing Surveys;2024-02-23

2. Longitudinal Assessment of Reference Quality on Wikipedia;Proceedings of the ACM Web Conference 2023;2023-04-30

3. KESHEM: Knowledge Enabled Short Health Misinformation Detection Framework;Machine Learning and Knowledge Discovery in Databases: Research Track;2023

4. UnCommonSense: Informative Negative Knowledge about Everyday Concepts;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

5. Crowdsourced Fact Validation for Knowledge Bases;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3