M4

Author:

Jugel Uwe1,Jerzak Zbigniew1,Hackenbroich Gregor1,Markl Volker2

Affiliation:

1. SAP AG, Dresden, Germany

2. Technische Universität Berlin, Berlin, Germany

Abstract

Visual analysis of high-volume time series data is ubiquitous in many industries, including finance, banking, and discrete manufacturing. Contemporary, RDBMS-based systems for visualization of high-volume time series data have difficulty to cope with the hard latency requirements and high ingestion rates of interactive visualizations. Existing solutions for lowering the volume of time series data disregard the semantics of visualizations and result in visualization errors. In this work, we introduce M4, an aggregation-based time series dimensionality reduction technique that provides error-free visualizations at high data reduction rates. Focusing on line charts, as the predominant form of time series visualization, we explain in detail the drawbacks of existing data reduction techniques and how our approach outperforms state of the art, by respecting the process of line rasterization. We describe how to incorporate aggregation-based dimensionality reduction at the query level in a visualization-driven query rewriting system. Our approach is generic and applicable to any visualization system that uses an RDBMS as data source. Using real world data sets from high tech manufacturing, stock markets, and sports analytics domains we demonstrate that our visualization-oriented data aggregation can reduce data volumes by up to two orders of magnitude, while preserving perfect visualizations.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualization-Aware Time Series Min-Max Caching with Error Bound Guarantees;Proceedings of the VLDB Endowment;2024-04

2. Asynchronously Assigning, Monitoring, and Managing Assembly Goals in Virtual Reality for High-Level Robot Teleoperation;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

3. Time Series Representation for Visualization in Apache IoTDB;Proceedings of the ACM on Management of Data;2024-03-12

4. EMPHASISCHECKER: A Tool for Guiding Chart and Caption Emphasis;IEEE Transactions on Visualization and Computer Graphics;2024-01

5. MinMaxLTTB: Leveraging MinMax-Preselection to Scale LTTB;2023 IEEE Visualization and Visual Analytics (VIS);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3