Storage management in AsterixDB

Author:

Alsubaiee Sattam1,Behm Alexander2,Borkar Vinayak1,Heilbron Zachary1,Kim Young-Seok1,Carey Michael J.1,Dreseler Markus3,Li Chen1

Affiliation:

1. University of California, Irvine

2. Cloudera

3. Hasso Plattner Institute Potsdam

Abstract

Social networks, online communities, mobile devices, and instant messaging applications generate complex, unstructured data at a high rate, resulting in large volumes of data. This poses new challenges for data management systems that aim to ingest, store, index, and analyze such data efficiently. In response, we released the first public version of AsterixDB, an open-source Big Data Management System (BDMS), in June of 2013. This paper describes the storage management layer of AsterixDB, providing a detailed description of its ingestion-oriented approach to local storage and a set of initial measurements of its ingestion-related performance characteristics. In order to support high frequency insertions, AsterixDB has wholly adopted Log-Structured Merge-trees as the storage technology for all of its index structures. We describe how the AsterixDB software framework enables "LSM-ification" (conversion from an in-place update, disk-based data structure to a deferred-update, append-only data structure) of any kind of index structure that supports certain primitive operations, enabling the index to ingest data efficiently. We also describe how AsterixDB ensures the ACID properties for operations involving multiple heterogeneous LSM-based indexes. Lastly, we highlight the challenges related to managing the resources of a system when many LSM indexes are used concurrently and present AsterixDB's initial solution.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling space-time efficient range queries with REncoder;The VLDB Journal;2024-08-07

2. A Survey of Multi-Dimensional Indexes: Past and Future Trends;IEEE Transactions on Knowledge and Data Engineering;2024-08

3. On Reducing Space Amplification with Multi-Column Compaction in Apache IoTDB;Proceedings of the VLDB Endowment;2024-07

4. Beyond Bloom: A Tutorial on Future Feature-Rich Filters;Companion of the 2024 International Conference on Management of Data;2024-06-09

5. An effective spatial join method for blockchain-based geospatial data using hierarchical quadrant spatial LSM+ tree;The Journal of Supercomputing;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3