An in-depth comparison of s-t reliability algorithms over uncertain graphs

Author:

Ke Xiangyu1,Khan Arijit1,Quan Leroy Lim Hong1

Affiliation:

1. NTU Singapore

Abstract

Uncertain, or probabilistic, graphs have been increasingly used to represent noisy linked data in many emerging applications, and have recently attracted the attention of the database research community. A fundamental problem on uncertain graphs is the s-t reliability, which measures the probability that a target node t is reachable from a source node s in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Due to the inherent complexity of the s-t reliability estimation problem (#P-hard), various sampling and indexing based efficient algorithms were proposed in the literature. However, since they have not been thoroughly compared with each other, it is not clear whether the later algorithm outperforms the earlier ones. More importantly, the comparison framework, datasets, and metrics were often not consistent (e.g., different convergence criteria were employed to find the optimal number of samples) across these works. We address this serious concern by re-implementing six state-of-the-art s-t reliability estimation methods in a common system and code base, using several medium and large-scale, real-world graph datasets, identical evaluation metrics, and query workloads. Through our systematic and in-depth analysis of experimental results, we report surprising findings, such as many follow-up algorithms can actually be several orders of magnitude inefficient, less accurate, and more memory intensive compared to the ones that were proposed earlier. We conclude by discussing our recommendations on the road ahead.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Benchmark Study of Deep-RL Methods for Maximum Coverage Problems over Graphs;Proceedings of the VLDB Endowment;2024-07

2. uBlade: Efficient Batch Processing for Uncertainty Graph Queries;Proceedings of the ACM on Management of Data;2024-05-29

3. Fast Query Answering by Labeling Index on Uncertain Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Sage;Proceedings of the VLDB Endowment;2022-09

5. A survey on mining and analysis of uncertain graphs;Knowledge and Information Systems;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3