Tiresias

Author:

Abebe Michael1,Lazu Horatiu1,Daudjee Khuzaima1

Affiliation:

1. University of Waterloo

Abstract

To efficiently store and query a DBMS, administrators must select storage and indexing configurations. For example, one must decide whether data should be stored in rows or columns, in-memory or on disk, and which columns to index. These choices can be challenging to make for workloads that are mixed requiring hybrid transactional and analytical processing (HTAP) support. There is growing interest in system designs that can adapt how data is stored and indexed to execute these workloads efficiently. We present Tiresias , a predictor that learns the cost of data accesses and predicts their latency and likelihood under different storage scenarios. Tiresias makes these predictions by collecting observed latencies and access histories to build predictive models in an online manner, enabling autonomous storage and index adaptation. Experimental evaluation shows the benefits of predictive adaptation and the trade-offs for different predictive techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference63 articles.

1. 2010. The Transaction Processing Council. TPC-C Benchmark (Revision 5.11). 2010. The Transaction Processing Council. TPC-C Benchmark (Revision 5.11).

2. 2018. The Transaction Processing Council. TPC-H Benchmark (Revision 2.18). 2018. The Transaction Processing Council. TPC-H Benchmark (Revision 2.18).

3. 2022. The Sloan Digital Sky Survey (SkyServer). 2022. The Sloan Digital Sky Survey (SkyServer).

4. Integrating compression and execution in column-oriented database systems

5. Column-stores vs. row-stores

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on hybrid transactional and analytical processing;The VLDB Journal;2024-06-04

2. Sibyl: Forecasting Time-Evolving Query Workloads;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3