ConnectorX

Author:

Wang Xiaoying1,Wu Weiyuan1,Wu Jinze1,Chen Yizhou1,Zrymiak Nick1,Qu Changbo1,Flokas Lampros2,Chow George1,Wang Jiannan1,Wang Tianzheng1,Wu Eugene2,Zhou Qingqing3

Affiliation:

1. Simon Fraser University

2. Columbia University

3. Tencent Inc.

Abstract

Data is often stored in a database management system (DBMS) but dataframe libraries are widely used among data scientists. An important but challenging problem is how to bridge the gap between databases and dataframes. To solve this problem, we present ConnectorX, a client library that enables fast and memory-efficient data loading from various databases to different dataframes. We first investigate why the loading process is slow and consumes large memory. We surprisingly find that the main overhead comes from the client-side rather than query execution or data transfer. We integrate several existing and new techniques to reduce the overhead and carefully design the system architecture and interface to make ConnectorX easy to extend to various databases and dataframes. Moreover, we propose server-side result partitioning that can be adopted by DBMSs in order to better support exporting data to data science tools. We conduct extensive experiments to evaluate ConnectorX and compare it with popular libraries. The results show that ConnectorX significantly outperforms existing solutions. ConnectorX is open sourced at: https://github.com/sfu-db/connector-x.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference70 articles.

1. 2001--2022. pickle --- Python object serialization. https://docs.python.org/3/library/pickle.html. Accessed: 2022-05-01. 2001--2022. pickle --- Python object serialization. https://docs.python.org/3/library/pickle.html. Accessed: 2022-05-01.

2. 2011--2019. Apache Sqoop. https://sqoop.apache.org/. Accessed: 2022-05-01. 2011--2019. Apache Sqoop. https://sqoop.apache.org/. Accessed: 2022-05-01.

3. 2014--2021. Ibis: Write your analytics code once, run it everywhere . http://ibis-project.org. Accessed: 2022-01-27. 2014--2021. Ibis: Write your analytics code once, run it everywhere. http://ibis-project.org. Accessed: 2022-01-27.

4. 2016. pandas read_sql is unusually slow. https://stackoverflow.com/questions/40045093/pandas-read-sql-is-unusually-slow. Accessed: 2022-01-27. 2016. pandas read_sql is unusually slow. https://stackoverflow.com/questions/40045093/pandas-read-sql-is-unusually-slow. Accessed: 2022-01-27.

5. 2016. Pandas using too much memory with read_sql_table. https://stackoverflow.com/questions/41253326/pandas-using-too-much-memory-with-read-sql-table. Accessed: 2022-01-27. 2016. Pandas using too much memory with read_sql_table. https://stackoverflow.com/questions/41253326/pandas-using-too-much-memory-with-read-sql-table. Accessed: 2022-01-27.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparison of End-to-End Decision Forest Inference Pipelines;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

2. P2D: A Transpiler Framework for Optimizing Data Science Pipelines;Proceedings of the Seventh Workshop on Data Management for End-to-End Machine Learning;2023-06-18

3. Teaching Blue Elephants the Maths for Machine Learning;Proceedings of the Seventh Workshop on Data Management for End-to-End Machine Learning;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3