Affiliation:
1. University of Wisconsin-Madison
Abstract
Buying and selling of data online has increased substantially over the last few years. Several frameworks have already been proposed that study query pricing in theory and practice. The key guiding principle in these works is the notion of
arbitrage-freeness
where the broker can set different prices for different queries made to the dataset, but must ensure that the pricing function does not provide the buyers with opportunities for arbitrage. However, little is known about revenue maximization aspect of query pricing. In this paper, we study the problem faced by a broker selling access to data with the goal of maximizing her revenue. We show that this problem can be formulated as a revenue maximization problem with single-minded buyers and unlimited supply, for which several approximation algorithms are known. We perform an extensive empirical evaluation of the performance of several pricing algorithms for the query pricing problem on real-world instances. In addition to previously known approximation algorithms, we propose several new heuristics and analyze them both theoretically and experimentally. Our experiments show that algorithms with the best theoretical bounds are not necessarily the best empirically. We identify algorithms and heuristics that are both fast and also provide consistently good performance when valuations are drawn from a wide variety of distributions.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献