FEDEX

Author:

Deutch Daniel1,Gilad Amir2,Milo Tova1,Mualem Amit1,Somech Amit3

Affiliation:

1. Tel Aviv University

2. Duke University

3. Bar-Ilan University

Abstract

When exploring a new dataset, Data Scientists often apply analysis queries, look for insights in the resulting dataframe, and repeat to apply further queries. We propose in this paper a novel solution that assists data scientists in this laborious process. In a nutshell, our solution pinpoints the most interesting (sets of) rows in each obtained dataframe. Uniquely, our definition of interest is based on the contribution of each row to the interestingness of different columns of the entire dataframe, which, in turn, is defined using standard measures such as diversity and exceptionality. Intuitively, interesting rows are ones that explain why (some column of) the analysis query result is interesting as a whole. Rows are correlated in their contribution and so the interesting score for a set of rows may not be directly computed based on that of individual rows. We address the resulting computational challenge by restricting attention to semantically-related sets, based on multiple notions of semantic relatedness; these sets serve as more informative explanations. Our experimental study across multiple real-world datasets shows the usefulness of our system in various scenarios.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference81 articles.

1. Deepak Agarwal , Dhiman Barman , Dimitrios Gunopulos , Neal E Young , Flip Korn , and Divesh Srivastava . 2007 . Efficient and effective explanation of change in hierarchical summaries . In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. 6--15 . Deepak Agarwal, Dhiman Barman, Dimitrios Gunopulos, Neal E Young, Flip Korn, and Divesh Srivastava. 2007. Efficient and effective explanation of change in hierarchical summaries. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. 6--15.

2. Yael Amsterdamer , Daniel Deutch , and Val Tannen . 2011 . Provenance for aggregate queries . In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 153--164 . Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggregate queries. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 153--164.

3. On detecting cherry-picked trendlines;Asudeh Abolfazl;Proceedings of the VLDB Endowment,2020

4. Zhifeng Bao , Yong Zeng , HV Jagadish , and Tok Wang Ling . 2015 . Exploratory keyword search with interactive input . In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 871--876 . Zhifeng Bao, Yong Zeng, HV Jagadish, and Tok Wang Ling. 2015. Exploratory keyword search with interactive input. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 871--876.

5. Ori Bar El Tova Milo and Amit Somech. 2020. Automatically generating data exploration sessions using deep reinforcement learning. In SIGMOD. 1527--1537. Ori Bar El Tova Milo and Amit Somech. 2020. Automatically generating data exploration sessions using deep reinforcement learning. In SIGMOD. 1527--1537.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Summarized Causal Explanations For Aggregate Views;Proceedings of the ACM on Management of Data;2024-03-12

2. Selecting Sub-tables for Data Exploration;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3