Automated relational data explanation using external semantic knowledge

Author:

Galhotra Sainyam1,Khurana Udayan2

Affiliation:

1. The University of Chicago

2. IBM Research AI

Abstract

In data science problems, understanding the data is a crucial first step. However, it can be challenging and time intensive for a data scientist who is not an expert in that domain. Several downstream tasks such as feature engineering and data curation depend on the understanding of data semantics. In this demonstration, we present, ADE (Automated Data Explanation) , a novel system that uses maximum likelihood estimation approach through ensembles for automatically labeling and explaining relational data by taking advantage of openly available semantic knowledge bases, webtables and Wikipedia. It helps a user to understand concepts of various columns and their relationships, an abstract summary about the overall data, and additional context not present in the data. It reduces the need for cumbersome search queries or expert consultation and can also receive inputs or corrections from a user, making it a mixed-initiative automation system.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference11 articles.

1. DIFF

2. J Chen , E Jiménez-Ruiz , I Horrocks , and C Sutton . 2019 . Colnet: Embedding the semantics of web tables for column type prediction. In AAAI. J Chen, E Jiménez-Ruiz, I Horrocks, and C Sutton. 2019. Colnet: Embedding the semantics of web tables for column type prediction. In AAAI.

3. Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics

4. Automated Feature Enhancement for Predictive Modeling using External Knowledge

5. Kevin Hu Neil Gaikwad Michiel Bakker Madelon Hulsebos Emanuel Zgraggen César Hidalgo Tim Kraska Guoliang Li Arvind Satyanarayan and Çağatay Demiralp. 2019. VizNet: Towards a large-scale visualization learning and benchmarking repository. In CHI. ACM. Kevin Hu Neil Gaikwad Michiel Bakker Madelon Hulsebos Emanuel Zgraggen César Hidalgo Tim Kraska Guoliang Li Arvind Satyanarayan and Çağatay Demiralp. 2019. VizNet: Towards a large-scale visualization learning and benchmarking repository. In CHI. ACM.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Evidence on Conversational Control of GUI in Semantic Automation;Proceedings of the 29th International Conference on Intelligent User Interfaces;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3