EDA4SUM

Author:

Personnaz Aurélien1,Youngmann Brit2,Amer-Yahia Sihem1

Affiliation:

1. Univ. Grenoble Alpes

2. MIT CSAIL

Abstract

We demonstrate EDA4Sum, a framework dedicated to generating guided multi-step data summarization pipelines for very large datasets. Data summarization is the process of producing interpretable and representative subsets of an input dataset. It is usually performed following a one-shot process with the purpose of finding the best summary. EDA4Sum leverages Exploratory Data Analysis (EDA) to produce connected summaries in multiple steps, with the goal of maximizing their cumulative utility. A useful summary contains k individually uniform sets that are collectively diverse to be representative of the input data. EDA4Sum accommodates datasets with different characteristics by providing the ability to tune the weights of uniformity, diversity and novelty when generating multi-step summaries. We demonstrate the superiority of multi-step EDA summarization over single-step summarization for summarizing very large data, and the need to provide guidance to domain experts, by interacting with the VLDB'22 participants who will act as data analysts. The application is avilable at https://bit.ly/eda4sum_application.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference13 articles.

1. Sihem Amer-Yahia Tova Milo and Brit Youngmann. 2021. Exploring Ratings in Subjective Databases. In SIGMOD. Sihem Amer-Yahia Tova Milo and Brit Youngmann. 2021. Exploring Ratings in Subjective Databases. In SIGMOD.

2. Ori Bar El Tova Milo and Amit Somech. 2020. Automatically generating data exploration sessions using deep reinforcement learning. In SIGMOD. 1527--1537. Ori Bar El Tova Milo and Amit Somech. 2020. Automatically generating data exploration sessions using deep reinforcement learning. In SIGMOD. 1527--1537.

3. Alexandra Kim , Laks VS Lakshmanan, and Divesh Srivastava . 2020 . Summarizing Hierarchical Multidimensional Data. In ICDE. IEEE. Alexandra Kim, Laks VS Lakshmanan, and Divesh Srivastava. 2020. Summarizing Hierarchical Multidimensional Data. In ICDE. IEEE.

4. Volodymyr Mnih , Adrià Puigdomènech Badia , Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016 . Asynchronous Methods for Deep Reinforcement Learning. In ICML. Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous Methods for Deep Reinforcement Learning. In ICML.

5. DORA THE EXPLORER

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3