SQLite

Author:

Gaffney Kevin P.1,Prammer Martin1,Brasfield Larry2,Hipp D. Richard2,Kennedy Dan2,Patel Jignesh M.1

Affiliation:

1. University of Wisconsin-Madison

2. SQLite

Abstract

In the two decades following its initial release, SQLite has become the most widely deployed database engine in existence. Today, SQLite is found in nearly every smartphone, computer, web browser, television, and automobile. Several factors are likely responsible for its ubiquity, including its in-process design, standalone codebase, extensive test suite, and cross-platform file format. While it supports complex analytical queries, SQLite is primarily designed for fast online transaction processing (OLTP), employing row-oriented execution and a B-tree storage format. However, fueled by the rise of edge computing and data science, there is a growing need for efficient in-process online analytical processing (OLAP). DuckDB, a database engine nicknamed "the SQLite for analytics", has recently emerged to meet this demand. While DuckDB has shown strong performance on OLAP benchmarks, it is unclear how SQLite compares. Furthermore, we are aware of no work that attempts to identify root causes for SQLite's performance behavior on OLAP workloads. In this paper, we discuss SQLite in the context of this changing workload landscape. We describe how SQLite evolved from its humble beginnings to the full-featured database engine it is today. We evaluate the performance of modern SQLite on three benchmarks, each representing a different flavor of in-process data management, including transactional, analytical, and blob processing. We delve into analytical data processing on SQLite, identifying key bottlenecks and weighing potential solutions. As a result of our optimizations, SQLite is now up to 4.2X faster on SSB. Finally, we discuss the future of SQLite, envisioning how it will evolve to meet new demands and challenges.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference52 articles.

1. Memory-efficient hash joins

2. Space/time trade-offs in hash coding with allowable errors

3. Ming-Syan Chen , Hui- I Hsiao , and Philip S. Yu . 1993. Applying Hash Filters to Improving the Execution of Bushy Trees . In 19th International Conference on Very Large Databases. 506--516 . Ming-Syan Chen, Hui-I Hsiao, and Philip S. Yu. 1993. Applying Hash Filters to Improving the Execution of Bushy Trees. In 19th International Conference on Very Large Databases. 506--516.

4. On applying hash filters to improving the execution of multi-join queries

5. Interleaving a join sequence with semijoins in distributed query processing

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3