Fast range query processing with strong privacy protection for cloud computing

Author:

Li Rui1,Liu Alex X.2,Wang Ann L.3,Bruhadeshwar Bezawada4

Affiliation:

1. Hunan university, ChangSha, China and Nanjing University, Nanjing, China

2. Michigan State University, East Lansing, MI and Nanjing University, Nanjing, China

3. Michigan State University, East Lansing, MI

4. Nanjing University, Nanjing, China

Abstract

Privacy has been the key road block to cloud computing as clouds may not be fully trusted. This paper concerns the problem of privacy preserving range query processing on clouds. Prior schemes are weak in privacy protection as they cannot achieve index indistinguishability, and therefore allow the cloud to statistically estimate the values of data and queries using domain knowledge and history query results. In this paper, we propose the first range query processing scheme that achieves index indistinguishability under the indistinguishability against chosen keyword attack (IND-CKA). Our key idea is to organize indexing elements in a complete binary tree called PBtree, which satisfies structure indistinguishability ( i.e. , two sets of data items have the same PBtree structure if and only if the two sets have the same number of data items) and node indistinguishability ( i.e. , the values of PBtree nodes are completely random and have no statistical meaning). We prove that our scheme is secure under the widely adopted IND-CKA security model. We propose two algorithms, namely PBtree traversal width minimization and PBtree traversal depth minimization, to improve query processing efficiency. We prove that the worse case complexity of our query processing algorithm using PBtree is O (| R | log n ), where n is the total number of data items and R is the set of data items in the query result. We implemented and evaluated our scheme on a real world data set with 5 million items. For example, for a query whose results contain ten data items, it takes only 0.17 milliseconds.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3