BF-tree

Author:

Athanassoulis Manos1,Ailamaki Anastasia1

Affiliation:

1. École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland

Abstract

The increasing volume of time-based generated data and the shift in storage technologies suggest that we might need to reconsider indexing. Several workloads - like social and service monitoring - often include attributes with implicit clustering because of their time-dependent nature. In addition, solid state disks (SSD) (using flash or other low-level technologies) emerge as viable competitors of hard disk drives (HDD). Capacity and access times of storage devices create a trade-off between SSD and HDD. Slow random accesses in HDD have been replaced by efficient random accesses in SSD, but their available capacity is one or more orders of magnitude more expensive than the one of HDD. Indexing, however, is designed assuming HDD as secondary storage, thus minimizing random accesses at the expense of capacity. Indexing data using SSD as secondary storage requires treating capacity as a scarce resource. To this end, we introduce approximate tree indexing, which employs probabilistic data structures (Bloom filters) to trade accuracy for size and produce smaller, yet powerful, tree indexes, which we name Bloom filter trees (BF-Trees). BF-Trees exploit pre-existing data ordering or partitioning to offer competitive search performance. We demonstrate, both by an analytical study and by experimental results, that by using workload knowledge and reducing indexing accuracy up to some extent, we can save substantially on capacity when indexing on ordered or partitioned attributes. In particular, in experiments with a synthetic workload, approximate indexing offers 2.22x-48x smaller index footprint with competitive response times, and in experiments with TPCH and a monitoring real-life dataset from an energy company, it offers 1.6x-4x smaller index footprint with competitive search times as well.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking Learned and LSM Indexes for Data Sortedness;Proceedings of the Tenth International Workshop on Testing Database Systems;2024-06-09

2. Spruce: a Fast yet Space-saving Structure for Dynamic Graph Storage;Proceedings of the ACM on Management of Data;2024-03-12

3. Approximate sorting and its applications in I/O model;Theoretical Computer Science;2024-03

4. GLIN: A (G)eneric (L)earned (In)dexing Mechanism for Complex Geometries;Proceedings of the 11th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data;2023-11-13

5. Enabling Timely and Persistent Deletion in LSM-Engines;ACM Transactions on Database Systems;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3