TaGSim

Author:

Bai Jiyang1,Zhao Peixiang1

Affiliation:

1. Florida State University

Abstract

Computing similarity between graphs is a fundamental and critical problem in graph-based applications, and one of the most commonly used graph similarity measures is graph edit distance (GED), defined as the minimum number of graph edit operations that transform one graph to another. Existing GED solutions suffer from severe performance issues due in particular to the NP-hardness of exact GED computation. Recently, deep learning has shown early promise for GED approximation with high accuracy and low computational cost. However, existing methods treat GED as a global, coarse-grained graph similarity value, while neglecting the type-specific transformative impacts incurred by different types of graph edit operations, including node insertion/deletion, node relabeling, edge insertion/deletion, and edge relabeling. In this paper, we propose a type-aware graph similarity learning and computation framework, TaGSim (T ype -a ware G raph Sim ilarity), that estimates GED in a fine-grained approach w.r.t. different graph edit types. Specifically, for each type of graph edit operations, TaGSim models its unique transformative impacts upon graphs, and encodes them into high-quality, type-aware graph embeddings, which are further fed into type-aware neural networks for accurate GED estimation. Extensive experiments on five real-world datasets demonstrate the effectiveness and efficiency of TaGSim, which significantly outperforms state-of-the-art GED solutions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference51 articles.

1. Sami Abu-El-Haija , Bryan Perozzi , Amol Kapoor , Nazanin Alipourfard , Kristina Lerman , Hrayr Harutyunyan , Greg Ver Steeg , and Aram Galstyan . 2019 . Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing . In International Conference on Machine Learning (ICML'19) . 21--29. Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In International Conference on Machine Learning (ICML'19). 21--29.

2. SimGNN

3. Comparing heuristics for graph edit distance computation

4. Improved Lower Bounds for Graph Edit Distance

5. On the exact computation of the graph edit distance

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph node matching for edit distance;Pattern Recognition Letters;2024-08

2. Code Similarity Prediction Model for Industrial Management Features Based on Graph Neural Networks;Entropy;2024-06-09

3. MATA*: Combining Learnable Node Matching with A* Algorithm for Approximate Graph Edit Distance Computation;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. Computing Graph Edit Distance via Neural Graph Matching;Proceedings of the VLDB Endowment;2023-04

5. Community Search: A Meta-Learning Approach;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3