Affiliation:
1. Florida State University
Abstract
Computing similarity between graphs is a fundamental and critical problem in graph-based applications, and one of the most commonly used graph similarity measures is graph edit distance (GED), defined as the minimum number of graph edit operations that transform one graph to another. Existing GED solutions suffer from severe performance issues due in particular to the NP-hardness of exact GED computation. Recently, deep learning has shown early promise for GED approximation with high accuracy and low computational cost. However, existing methods treat GED as a global, coarse-grained graph similarity value, while neglecting the type-specific transformative impacts incurred by different types of graph edit operations, including node insertion/deletion, node relabeling, edge insertion/deletion, and edge relabeling. In this paper, we propose a
type-aware
graph similarity learning and computation framework, TaGSim
(T
ype
-a
ware
G
raph
Sim
ilarity), that estimates GED in a fine-grained approach
w.r.t.
different graph edit types. Specifically, for each type of graph edit operations, TaGSim models its unique transformative impacts upon graphs, and encodes them into high-quality, type-aware graph embeddings, which are further fed into type-aware neural networks for accurate GED estimation. Extensive experiments on five real-world datasets demonstrate the effectiveness and efficiency of TaGSim, which significantly outperforms state-of-the-art GED solutions.
Publisher
Association for Computing Machinery (ACM)
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Reference51 articles.
1. Sami Abu-El-Haija , Bryan Perozzi , Amol Kapoor , Nazanin Alipourfard , Kristina Lerman , Hrayr Harutyunyan , Greg Ver Steeg , and Aram Galstyan . 2019 . Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing . In International Conference on Machine Learning (ICML'19) . 21--29. Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In International Conference on Machine Learning (ICML'19). 21--29.
2. SimGNN
3. Comparing heuristics for graph edit distance computation
4. Improved Lower Bounds for Graph Edit Distance
5. On the exact computation of the graph edit distance
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献