Scabbard

Author:

Theodorakis Georgios1,Kounelis Fotios1,Pietzuch Peter1,Pirk Holger1

Affiliation:

1. Imperial College London

Abstract

Single-node multi-core stream processing engines (SPEs) can process hundreds of millions of tuples per second. Yet making them fault-tolerant with exactly-once semantics while retaining this performance is an open challenge: due to the limited I/O bandwidth of a single-node, it becomes infeasible to persist all stream data and operator state during execution. Instead, single-node SPEs rely on upstream distributed systems, such as Apache Kafka, to recover stream data after failure, necessitating complex cluster-based deployments. This lack of built-in fault-tolerance features has hindered the adoption of single-node SPEs. We describe Scabbard, the first single-node SPE that supports exactly-once fault-tolerance semantics despite limited local I/O bandwidth. Scabbard achieves this by integrating persistence operations with the query workload. Within the operator graph, Scabbard determines when to persist streams based on the selectivity of operators: by persisting streams after operators that discard data, it can substantially reduce the required I/O bandwidth. As part of the operator graph, Scabbard supports parallel persistence operations and uses markers to decide when to discard persisted data. The persisted data volume is further reduced using workload-specific compression: Scabbard monitors stream statistics and dynamically generates computationally efficient compression operators. Our experiments show that Scabbard can execute stream queries that process over 200 million tuples per second while recovering from failures with sub-second latencies.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference110 articles.

1. Integrating compression and execution in column-oriented database systems

2. MillWheel

3. Amazon. 2021. Amazon Elastic Block Store. https://aws.amazon.com/ebs/. Last access: 28/10/21. Amazon. 2021. Amazon Elastic Block Store. https://aws.amazon.com/ebs/. Last access: 28/10/21.

4. Amazon. 2021. Amazon Kinesis. https://aws.amazon.com/kinesis/data-streams/. Last access: 28/10/21. Amazon. 2021. Amazon Kinesis. https://aws.amazon.com/kinesis/data-streams/. Last access: 28/10/21.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Aware Adaptive Compression for Stream Processing;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. DIBA: A Re-Configurable Stream Processor;IEEE Transactions on Knowledge and Data Engineering;2024-09

3. A Comprehensive Benchmarking Analysis of Fault Recovery in Stream Processing Frameworks;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

4. Safe Shared State in Dataflow Systems;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

5. Checkpointing models for tasks of different types;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3