Fast approximate nearest neighbor search with the navigating spreading-out graph

Author:

Fu Cong1,Xiang Chao1,Wang Changxu1,Cai Deng1

Affiliation:

1. Zhejiang University, China and Alibaba-Zhejiang University, Hangzhou, China

Abstract

Approximate nearest neighbor search (ANNS) is a fundamental problem in databases and data mining. A scalable ANNS algorithm should be both memory-efficient and fast. Some early graph-based approaches have shown attractive theoretical guarantees on search time complexity, but they all suffer from the problem of high indexing time complexity. Recently, some graph-based methods have been proposed to reduce indexing complexity by approximating the traditional graphs; these methods have achieved revolutionary performance on million-scale datasets. Yet, they still can not scale to billion-node databases. In this paper, to further improve the search-efficiency and scalability of graph-based methods, we start by introducing four aspects: (1) ensuring the connectivity of the graph; (2) lowering the average out-degree of the graph for fast traversal; (3) shortening the search path; and (4) reducing the index size. Then, we propose a novel graph structure called Monotonic Relative Neighborhood Graph (MRNG) which guarantees very low search complexity (close to logarithmic time). To further lower the indexing complexity and make it practical for billion-node ANNS problems, we propose a novel graph structure named Navigating Spreading-out Graph (NSG) by approximating the MRNG. The NSG takes the four aspects into account simultaneously. Extensive experiments show that NSG outperforms all the existing algorithms significantly. In addition, NSG shows superior performance in the E-commercial scenario of Taobao (Alibaba Group) and has been integrated into their billion-scale search engine.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3