Affiliation:
1. École Polytechnique Fédérale de Lausanne
2. New York University
Abstract
Visual exploration of spatial data relies heavily on spatial aggregation queries that slice and summarize the data over different regions. These queries comprise computationally-intensive point-in-polygon tests that associate data points to polygonal regions, challenging the responsiveness of visualization tools. This challenge is compounded by the sheer amounts of data, requiring a large number of such tests to be performed. Traditional pre-aggregation approaches are unsuitable in this setting since they fix the query constraints and support only rectangular regions. On the other hand, query constraints are defined interactively in visual analytics systems, and polygons can be of arbitrary shapes. In this paper, we convert a spatial aggregation query into a set of drawing operations on a canvas and leverage the rendering pipeline of the graphics hardware (GPU) to enable interactive response times. Our technique trades-off accuracy for response time by adjusting the canvas resolution, and can even provide accurate results when combined with a polygon index. We evaluate our technique on two large real-world data sets, exhibiting superior performance compared to index-based approaches.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献