Are key-foreign key joins safe to avoid when learning high-capacity classifiers?

Author:

Shah Vraj1,Kumar Arun1,Zhu Xiaojin2

Affiliation:

1. University of California

2. University of Wisconsin-Madison

Abstract

Machine learning (ML) over relational data is a booming area of data management. While there is a lot of work on scalable and fast ML systems, little work has addressed the pains of sourcing data for ML tasks. Real-world relational databases typically have many tables (often, dozens) and data scientists often struggle to even obtain all tables for joins before ML. In this context, Kumar et al. showed recently that key-foreign key dependencies (KFKDs) between tables often lets us avoid such joins without significantly affecting prediction accuracy-an idea they called "avoiding joins safely." While initially controversial, this idea has since been used by multiple companies to reduce the burden of data sourcing for ML. But their work applied only to linear classifiers. In this work, we verify if their results hold for three popular high-capacity classifiers: decision trees, non-linear SVMs, and ANNs. We conduct an extensive experimental study using both real-world datasets and simulations to analyze the effects of avoiding KFK joins on such models. Our results show that these high-capacity classifiers are surprisingly and counter-intuitively more robust to avoiding KFK joins compared to linear classifiers, refuting an intuition from the prior work's analysis. We explain this behavior intuitively and identify open questions at the intersection of data management and ML theoretical research. All of our code and datasets are available for download from http://cseweb.ucsd.edu/~arunkk/hamlet.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Large Scale Test Corpus for Semantic Table Search;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Data Acquisition for Improving Model Confidence;Proceedings of the ACM on Management of Data;2024-05-29

3. Mitigating Data Scarcity in Supervised Machine Learning Through Reinforcement Learning Guided Data Generation;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Stable Tuple Embeddings for Dynamic Databases;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

5. Coresets over multiple tables for feature-rich and data-efficient machine learning;Proceedings of the VLDB Endowment;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3