Detecting clusters in moderate-to-high dimensional data

Author:

Kriegel Hans-Peter1,Kröger Peer1,Zimek Arthur1

Affiliation:

1. Ludwig-Maximilians-Universität Mü;nchen, München, Germany

Abstract

As a prolific research area in data mining, subspace clustering and related problems induced a vast amount of proposed solutions. However, many publications compare a new proposition -- if at all -- with one or two competitors or even with a so called "naïve" ad hoc solution but fail to clarify the exact problem definition. As a consequence, even if two solutions are thoroughly compared experimentally, it will often remain unclear whether both solutions tackle the same problem or, if they do, whether they agree in certain tacit assumptions and how such assumptions may influence the outcome of an algorithm. In this tutorial, we try to clarify (i) the different problem definitions related to subspace clustering in general, (ii) the specific difficulties encountered in this field of research, (iii) the varying assumptions, heuristics, and intuitions forming the basis of different approaches, and (iv) how several prominent solutions essentially tackle different problems.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable graph clustering via expanders in the massively parallel computation model;Information Sciences;2024-08

2. PSubCLUS: A Parallel Subspace Clustering Algorithm Based On Spark;IEEE Access;2021

3. Systematic Review of Clustering High-Dimensional and Large Datasets;ACM Transactions on Knowledge Discovery from Data;2018-04-30

4. Correlation clustering;ACM SIGKDD Explorations Newsletter;2009-11-16

5. Validation indices for projective clustering;Frontiers of Computer Science in China;2009-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3