MRI

Author:

Das Mahashweta1,Amer-Yahia Sihem2,Das Gautam1,Yu Cong3

Affiliation:

1. University of Texas at Arlington

2. Qatar Computing Research Institute

3. Google Research

Abstract

Collaborative rating sites have become essential resources that many users consult to make purchasing decisions on various items. Ideally, a user wants to quickly decide whether an item is desirable, especially when many choices are available. In practice, however, a user either spends a lot of time examining reviews before making an informed decision, or simply trusts overall rating aggregations associated with an item. In this paper, we argue that neither option is satisfactory and propose a novel and powerful third option, Meaningful Ratings Interpretation (MRI) , that automatically provides a meaningful interpretation of ratings associated with the input items. As a simple example, given the movie "Usual Suspects," instead of simply showing the average rating of 8.7 from all reviewers, MRI produces a set of meaningful factoids such as "male reviewers under 30 from NYC love this movie". We define the notion of meaningful interpretation based on the idea of data cube, and formalize two important sub-problems, meaningful description mining and meaningful difference mining. We show that these problems are NP-hard and design randomized hill exploration algorithms to solve them efficiently. We conduct user studies to show that MRI provides more helpful information to users than simple average ratings. Performance evaluation over real data shows that our algorithms perform much faster and generate equally good interpretations as brute-force algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research in Collaborative Tagging Applications: Choosing the Right Dataset;VAWKUM Transactions on Computer Sciences;2023-03-05

2. Insight-Based Vocalization of OLAP Sessions;Advances in Databases and Information Systems;2022

3. Structure Analytics in Social Media;Encyclopedia of Database Systems;2018

4. Exploring Rated Datasets with Rating Maps;Proceedings of the 26th International Conference on World Wide Web;2017-04-03

5. Exceptional contextual subgraph mining;Machine Learning;2017-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3