Efficient subgraph search over large uncertain graphs

Author:

Yuan Ye1,Wang Guoren2,Wang Haixun3,Chen Lei4

Affiliation:

1. Northeastern University, China

2. Northeastern University, China and Wuhan University, Wuhan, Hubei, China

3. Microsoft Research Asia

4. Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Retrieving graphs containing a query graph from a large graph database is a key task in many graph-based applications, including chemical compounds discovery, protein complex prediction, and structural pattern recognition. However, graph data handled by these applications is often noisy, incomplete, and inaccurate because of the way the data is produced. In this paper, we study subgraph queries over uncertain graphs. Specifically, we consider the problem of answering threshold-based probabilistic queries over a large uncertain graph database with the possible world semantics. We prove that problem is #P-complete, therefore, we adopt a filtering-and-verification strategy to speed up the search. In the filtering phase, we use a probabilistic inverted index, PIndex, based on subgraph features obtained by an optimal feature selection process. During the verification phase, we develop exact and bound algorithms to validate the remaining candidates. Extensive experimental results demonstrate the effectiveness of the proposed algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Truss community search in uncertain graphs;Knowledge and Information Systems;2024-09-02

2. Attributed Network Embedding in Streaming Style;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Neural Similarity Search on Supergraph Containment;IEEE Transactions on Knowledge and Data Engineering;2024-01

4. Noise-Resistant Graph Neural Networks for Session-Based Recommendation;Lecture Notes in Computer Science;2024

5. Structure-adaptive graph neural network with temporal representation and residual connections;World Wide Web;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3