Efficient simrank-based similarity join over large graphs

Author:

Zheng Weiguo1,Zou Lei1,Feng Yansong1,Chen Lei2,Zhao Dongyan1

Affiliation:

1. Peking University, China

2. Hong Kong University of Science and Technology, China

Abstract

Graphs have been widely used to model complex data in many real-world applications. Answering vertex join queries over large graphs is meaningful and interesting, which can benefit friend recommendation in social networks and link prediction, etc. In this paper, we adopt "SimRank" to evaluate the similarity of two vertices in a large graph because of its generality. Note that "SimRank" is purely structure dependent and it does not rely on the domain knowledge. Specifically, we define a SimRank-based join (SRJ) query to find all the vertex pairs satisfying the threshold in a data graph G . In order to reduce the search space, we propose an estimated shortest-path distance based upper bound for SimRank scores to prune unpromising vertex pairs. In the verification, we propose a novel index, called h-go cover, to efficiently compute the SimRank score of a single vertex pair. Given a graph G , we only materialize the SimRank scores of a small proportion of vertex pairs (called h-go covers), based on which, the SimRank score of any vertex pair can be computed easily. In order to handle large graphs, we extend our technique to the partition-based framework. Thorough theoretical analysis and extensive experiments over both real and synthetic datasets confirm the efficiency and effectiveness of our solution.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3