Delta

Author:

Karanasos Konstantinos1,Katsifodimos Asterios2,Manolescu Ioana3

Affiliation:

1. IBM Almaden Research Center, San Jose, CA

2. Inria Saclay and Université Paris-Sud Orsay, France

3. Inria Saclay and Université, Paris-Sud Orsay, France

Abstract

In content-based publish-subscribe (pub/sub) systems, users express their interests as queries over a stream of publications. Scaling up content-based pub/sub to very large numbers of subscriptions is challenging: users are interested in low latency , that is, getting subscription results fast, while the pub/sub system provider is mostly interested in scaling , i.e., being able to serve large numbers of subscribers, with low computational resources utilization. We present a novel approach for scalable content-based pub/sub in the presence of constraints on the available CPU and network resources, implemented within our pub/sub system Delta. We achieve scalability by off-loading some subscriptions from the pub/sub server, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing views in a multi-level dissemination network, exploiting view-based rewriting and powerful linear programming capabilities to scale to many views, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Data Pipelines for Machine Learning in Feature Stores;Proceedings of the VLDB Endowment;2023-09

2. Graphsurge;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

3. Materialized View Maintenance: Issues, Classification, and Open Challenges;International Journal of Cooperative Information Systems;2019-03

4. Data Stream Management;Real-Time & Stream Data Management;2019

5. Selecting subexpressions to materialize at datacenter scale;Proceedings of the VLDB Endowment;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3