OLTP-Bench

Author:

Difallah Djellel Eddine1,Pavlo Andrew2,Curino Carlo3,Cudre-Mauroux Philippe1

Affiliation:

1. U. of Fribourg, Switzerland

2. Carnegie Mellon University

3. Microsoft Corporation

Abstract

Benchmarking is an essential aspect of any database management system (DBMS) effort. Despite several recent advancements, such as pre-configured cloud database images and database-as-a-service (DBaaS) offerings, the deployment of a comprehensive testing platform with a diverse set of datasets and workloads is still far from being trivial. In many cases, researchers and developers are limited to a small number of workloads to evaluate the performance characteristics of their work. This is due to the lack of a universal benchmarking infrastructure, and to the difficulty of gaining access to real data and workloads. This results in lots of unnecessary engineering efforts and makes the performance evaluation results difficult to compare. To remedy these problems, we present OLTP-Bench, an extensible "batteries included" DBMS benchmarking testbed. The key contributions of OLTP-Bench are its ease of use and extensibility, support for tight control of transaction mixtures, request rates, and access distributions over time, as well as the ability to support all major DBMSs and DBaaS platforms. Moreover, it is bundled with fifteen workloads that all differ in complexity and system demands, including four synthetic workloads, eight workloads from popular benchmarks, and three workloads that are derived from real-world applications. We demonstrate through a comprehensive set of experiments conducted on popular DBMS and DBaaS offerings the different features provided by OLTP-Bench and the effectiveness of our testbed in characterizing the performance of database services.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Database management system performance comparisons: A systematic literature review;Journal of Systems and Software;2024-02

2. No DBA? No Regret! Multi-Armed Bandits for Index Tuning of Analytical and HTAP Workloads With Provable Guarantees;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

3. An Efficient Transfer Learning Based Configuration Adviser for Database Tuning;Proceedings of the VLDB Endowment;2023-11

4. RackBlox: A Software-Defined Rack-Scale Storage System with Network-Storage Co-Design;Proceedings of the 29th Symposium on Operating Systems Principles;2023-10-23

5. On the Performance Intricacies of Persistent Memory Aware Storage Engines;IEEE Transactions on Knowledge and Data Engineering;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3