Asymptotically Better Query Optimization Using Indexed Algebra

Author:

Fent Philipp1,Moerkotte Guido2,Neumann Thomas1

Affiliation:

1. Technische Universität München

2. Universität Mannheim

Abstract

Query optimization is essential for the efficient execution of queries. The necessary analysis, if we can and should apply optimizations and transform the query plan, is already challenging. Traditional techniques focus on the availability of columns at individual operators, which does not scale for analysis of data flow through the query. Tracking available columns per operator takes quadratic space, which can result in multi-second optimization time for deep algebra trees. Instead, we need to re-think the naïve algebra representation to efficiently support data flow analysis. In this paper, we introduce Indexed Algebra , a novel representation of relational algebra that makes common optimization tasks efficient. Indexed Algebra enables efficient reasoning with an auxiliary index structure based on link/cut trees that support dynamic updates and queries in O (log n ). This approach not only improves the asymptotic complexity, but also allows elegant and concise formulations for the data flow questions needed for query optimization. While large queries see theoretically unbounded improvements, Indexed Algebra also improves optimization time of the relatively harmless queries of TPC-H and TPC-DS by more than 1.8×.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference40 articles.

1. DBToaster

2. TreeToaster: Towards an IVM-Optimized Compiler

3. Apache Calcite

4. Peter A. Boncz , Thomas Neumann , and Orri Erling . 2013. TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark . In TPCTC (Lecture Notes in Computer Science) , Vol. 8391 . Springer , 61--76. Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC (Lecture Notes in Computer Science), Vol. 8391. Springer, 61--76.

5. 1,000 tables under the form

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3